A Globally Convergent Augmented Lagrangian Pattern Search Algorithm for Optimization with General Constraints and Simple Bounds
نویسندگان
چکیده
We give a pattern search method for nonlinearly constrained optimization that is an adaption of a bound constrained augmented Lagrangian method first proposed by Conn, Gould, and Toint [SIAM J. Numer. Anal., 28 (1991), pp. 545–572]. In the pattern search adaptation, we solve the bound constrained subproblem approximately using a pattern search method. The stopping criterion proposed by Conn, Gould, and Toint for the solution of the subproblem requires explicit knowledge of derivatives. Such information is presumed absent in pattern search methods; however, we show how we can replace this with a stopping criterion based on the pattern size in a way that preserves the convergence properties of the original algorithm. In this way we proceed by successive, inexact, bound constrained minimization without knowing exactly how inexact the minimization is. As far as we know, this is the first provably convergent direct search method for general nonlinear programming.
منابع مشابه
A globally convergent Lagrangian barrier algorithm for optimization with general inequality constraints and simple bounds
We consider the global and local convergence properties of a class of Lagrangian barrier methods for solving nonlinear programming problems. In such methods, simple bound constraints may be treated separately from more general constraints. The objective and general constraint functions are combined in a Lagrangian barrier function. A sequence of such functions are approximately minimized within...
متن کاملA Globally Convergent Lagrangian Barrier Algorithm for Optimization with General Inequality Constraints
We consider the global and local convergence properties of a class of Lagrangian barrier methods for solving nonlinear programming problems. In such methods, simple bound constraints may be treated separately from more general constraints. The objective and general constraint functions are combined in a Lagrangian barrier function. A sequence of Lagrangian barrier functions are approximately mi...
متن کاملA globally and quadratically convergent primal-dual augmented Lagrangian algorithm for equality constrained optimization
A globally and quadratically convergent primal–dual augmented Lagrangian algorithm for equality constrained optimization Paul Armand & Riadh Omheni To cite this article: Paul Armand & Riadh Omheni (2015): A globally and quadratically convergent primal–dual augmented Lagrangian algorithm for equality constrained optimization, Optimization Methods and Software, DOI: 10.1080/10556788.2015.1025401 ...
متن کاملOn the Number of Inner Iterations Per Outer Iteration of a Globally Convergent Algorithm for Optimization with General Nonlinear Inequality Constraints and Simple Bounds
This paper considers the number of inner iterations required per outer iteration for the algorithm proposed by Conn et al. (1992a). We show that asymptotically, under suitable reasonable assumptions, a single inner iteration suces. On the number of inner iterations per outer iteration of a globally convergent algorithm for optimization with general nonlinear inequality constraints and simple bo...
متن کاملAugmented Downhill Simplex a Modified Heuristic Optimization Method
Augmented Downhill Simplex Method (ADSM) is introduced here, that is a heuristic combination of Downhill Simplex Method (DSM) with Random Search algorithm. In fact, DSM is an interpretable nonlinear local optimization method. However, it is a local exploitation algorithm; so, it can be trapped in a local minimum. In contrast, random search is a global exploration, but less efficient. Here, rand...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 12 شماره
صفحات -
تاریخ انتشار 2002